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What will we do today?

• The why: Motivation

• The what: What are symmetries of ODEs

• The how: Solving ODEs using symmetries

• Another how: Finding symmetries

• Higher order ODEs + PDEs



(Ricatti Equation)

Motivation
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How would you solve...

r = y/x, s = ln |x|

r = x2y, s = ln |x|

ds

dr
=

1
F (r)− r

ds

dr
=

1
r2 − 1

=⇒

=⇒



What are symmetries?
Wikipedia: A symmetry of an object is a physical or 
mathematical feature of the object (observed or intrinsic) 
that is “preserved” under some transformation

Example: Circle

• Invariant w.r.t to rotations

• Invariant w.r.t to reflections



Symmetries of ODEs
Symmetry of an ODE = 
   transformation that map solutions to solutions...

Γ : (x, y) !→ (x̂, ŷ)

For a first order ODE:
dy

dx
= ω(x, y)

dŷ

dx̂
= ω(x̂, ŷ)

a symmetry is a transformation of the plane:

such that:

when dy

dx
= ω(x, y)



Lie Symmetries
For practical cases we will only treat one-parameter Lie 
groups (:= Lie symmetries). Namely,

Γε : (x, y) !→ (x̂(x, y; ε); ŷ(x, y; ε))

Γ0 = Id

Γε

ΓδΓε = Γδ+ε

Γε

such that:
is a symmetry about 

is analytic at 

ε = 0

ε = 0

Examples:
Γ : (x, y) !→ (x + ε, y)

Γ : (x, y) !→ (x, y + ε)

Γ : (x, y) !→ (x, εy)

Γ : (x, y) !→ (x, eεy)



The Symmetry Condition
dŷ

dx̂
= ω(x̂, ŷ)

On solution curves                , so           can be thought of 
as functions of    only:

y = y(x) (x̂, ŷ)
x

We can use the chain rule to write:

ω(x̂, ŷ) =
Dxŷ

Dxx̂
=

ŷx + y′ŷy

x̂x + y′x̂y

so we get the symmetry condition:

ω(x̂, ŷ) =
ŷx + ω(x, y)ŷy

x̂x + ω(x, y)x̂y

But y′ = ω(x, y)

Examples

(x̂(x, y(x)), ŷ(x, y(x)))



Finding Invariant Solutions
Since the Lie symmetry is analytic at          :ε = 0

x̂ = x + εξ(x, y) + O(ε2)

ŷ = y + εη(x, y) + O(ε2)

Sometimes there are invariant solutions, namely solutions 
that are mapped to themselves by the transformation.
Solution         is invariant y(x) ⇐⇒ Its tangent is parallel to X

⇐⇒ (ξ(x, y), η(x, y)) ⊥ (y′(x), 1)

η(x, y)− y′(x)ξ(x, y) = 0

Q̄(x, y) = 0

Q̄(x, y) = η(x, y)− ω(x, y)ξ(x, y)where the characteristic is

⇐⇒
⇐⇒

Example

Yaron, draw a 
picture...



Solving ODEs using Symmetries
If                                 is a symmetry, solving the equation 
is easy...

(x, y) !→ (x, y + ε)

Goal: Find new coordinates that have vertical symmetry!
(x, y) !→ (r(x, y), s(x, y))

such that (r̂, ŝ) = (r(x̂, ŷ), s(x̂, ŷ)) = (r, s + ε)

         are called canonical coordinates, and are defined 
(not uniquely) by:
(r, s)

Xr = 0 Xs = 1
Notice: Canonical coordinates are not defined on invariant 
points.

Ah? Explanation + Examples

A. Newell (Spring 2009): “Even the most 
stubborn equations can be solved if you find 
the right coordinates...”



So solving it to find symmetries might be more difficult...

Finding Symmetries

ω(x̂, ŷ) =
ŷx + ω(x, y)ŷy

x̂x + ω(x, y)x̂y

In general, the symmetry condition:

is a nonlinear PDE for (x̂, ŷ)

Einstein: “In the middle of difficulty lies 
opportunity.”

DIFFICULTY

Expand the symmetry condition in   , 
and take the MIDDLE     term.

ε
ε1

Linearized Symmetry Condition:
Q̄x + ω(x, y)Q̄y = ωy(x, y)Q̄

Or instead...
For ODEs derived from

applications, we can usually use
the applications to find the 

symmetries!



Conclusions and such...
• The method is similar for higher order ODEs : 

Any Lie symmetry we find can reduce the 
order of the equation by at least one.

• For PDEs, this is an active research topic, and 
there are many open problems.

• There are many other techniques for finding 
symmetries, but...

• Since finding symmetries can be difficult, 
people take a symmetry and classify all the 
equations that have that symmetry instead.



Thank you!


