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where     is the Coulomb’s constant

Coulomb’s Law and the Electric Field
Newton’s second law: !F = m!̈x

The force exerted by a charge    
at     on a charge    at    is the 
Coulomb’s force: {

K

:= q !E(!x)

Q
q

Coulomb’s law only works for static charges

!F = K
qQ

|!x− !x0|3 (!x− !x0)

!x!x0
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where     is the electric field, and     is
called the magnetic field.

Lorentz Force Equation
When the charge    is not at rest and has velocity   , the 
force has an additional component:

!F = q( !E + !v × !B)

Together with Newton’s second law it gives the Lorentz 
force equation:

!E !B

!vq

m!̈x = q( !E + !v × !B)

In order to fully describe a system of charges, we need 
to determine the electric and magnetic fields.

This is the Lorentz force.
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Maxwell (1865): Light is an 
electromagnetic wave.

This is the wave equation!

=⇒

    &     are called the vector and scalar potentials.

Maxwell’s Equations
∇ · !E = 4πρ

∇ · !B = 0

∇× !E +
∂ !B

∂t
= 0

∇× !B − ∂ !E

∂t
= 4π !J

!B = ∇× !A

!E = −∇φ− ∂ !A

∂t

{
Gauss’s law:

No magnetic “charges”:

Faraday’s law:

Ampère’s law:

=⇒

!A φ

Plugging them into the non-homogenous equations gives:
[

∂2

∂t2
−∆

]
φ = 4πρ

[
∂2

∂t2
−∆

]
"A = 4π "J

ρ

!J

= charge density

= current density

Optics ! Electromagnetism
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Einstein: The electric and magnetic fields are the 
manifestation of the same field, viewed differently by 
different observers.

The Special Theory of Relativity (1905)
Postulate: The speed of light c is the same for all observers

Time

(t1, x1, y1, z1)

(t2, x2, y2, z2)

Space

cdt =
√

(dx)2 + (dy)2 + (dz)2

ηαβ =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





Introduce the notation: x0 = ct, x1 = x, x2 = y, x3 = z

and the matrix:

and we can rewrite the condition as:
ηαβdxαdxβ = 0

Mathematically, this turns spacetime into a 4D manifold 
with an ‘inner-product’:

(Sum over 
repeated indices)

〈u, v〉 = ηαβuαvβ
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Covariant Formulation of Maxwell’s 
equations

Write the non-homogenous Maxwell’s equations in 
components:

∂Ex

∂x1
+

∂Ey

∂x2
+

∂Ez

∂x3
= 4πρ

−∂Ex

∂x0
+

∂Bz

∂x2
− ∂By

∂x3
= 4πJx

∂Fαβ

∂xα
= 4πJβ

∇ · !E = 4πρ

∇× !B − ∂ !E

∂t
= 4π !J

We can write it using matrices as:

Fαβ =





0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0



with

=⇒

=⇒

Jα = (ρ, "J)and

how do we get the homogenous equations?
Aα = (φ, "A)four-potential: Fαβ =

∂Aβ

∂xα
− ∂Aα

∂xβ
=⇒

Geometry intermission
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Covariant Formulation of Lorentz 
Force equation

In classical mechanics: !x = (x(t), y(t), z(t))
xα = (x0(τ), x1(τ), x2(τ), x3(τ))In special relativity:

The parameter    is the proper time, the time measured in 
the reference frame of the particle itself.

τ

The Lorentz force equation
mu̇α = qFαβuβturns into:

m!̇v = q( !E + !v × !B)

γ =
1√

1− v2

The generalization of the velocity is 
the four-velocity:

where

uα =
dxα

dτ
= γ(1,"v)
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Maxwell equations => the rate at which energy is radiated 
away from the electron is: 

The Problem of Radiation-Reaction
The Lorentz force equation: mu̇α = −eFαβuβ

R = −mτ0u̇
αu̇α τ0 =

2
3

e2

m
= 6.24× 10−24 s

Therefore an accelerating charge loses energy.
This effect is not included in the Lorentz force equation!
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Lorentz force equation doesn’t account for energy lost

Example: circularly 
polarized plane wave
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The Lorentz-Abraham-Dirac (LAD) Equation
Dirac (1938): Maxwell equations and energy conservation 
give

mu̇α = −eFαβuβ + mτ0

[
üα + u̇2uα

]

FLorentz FRR

{ {
This is the LAD equation (Lorentz-Abraham-Dirac).
The 3rd order time derivative requires another initial 
condition (initial acceleration), and results in infinitely 
many non-physical solutions...

Dirac replaced the additional condition with an 
“asymptotic condition”. Instead of giving the initial 
acceleration, give the final acceleration.
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If     is a characteristic time scale, the radiation-reaction 
force is of order

So to leading order in   , we get the Lorentz force Eq:

The Landau-Lifshitz (LL) Equation
mu̇α = −eFαβuβ + mτ0

[
üα + u̇2uα

]
The LAD:

Therefore,
mu̇α = −eFαβuβ + O(ε)

müα = −e
d

dτ

(
Fαβuβ

)
+ O(ε)

Using this approximation in the LAD gives the Landau-
Lifshitz equation:

mu̇α = −eFαβuβ − eτ0

{
Fαβ

,γ uβuγ − e/m
[
FαβFβγuγ − F βγFγδu

δuβuα
]}

τc

ε =
τ0

τc

ε
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History of the Radiation-Reaction Problem
• 1865 : Maxwell formulates the theory of electromagnetism

• 1892 : Lorentz introduces the Lorentz force equation and argues that the 
radiation-reaction force is missing...

• 1903 : Abraham finds the radiation-reaction force

• 1904: Lorentz assumes that the electron is a solid sphere, and proves that 
the self-force exerted by the sphere on itself = radiation-reaction force

• 1905: Poincaré realizes that this means that in the lack of other forces, the 
sphere will explode...

• 1905-1920: People realize that the atom will be unstable

• 1920’s: Schrödinger and his buddies formulate Quantum Mechanics.
For about a decade people “forgot” about radiation-reaction...

• 1938: Dirac derives the covariant Lorentz-Abraham-Dirac equation

• 1938-1948: The physics community notices that the LAD has non-physical 
solutions

• 1948: Eliezer “derives” a new equation

• 1951: Landau & Lifshitz introduce the LL equation

• 1956: Caldirola claims that time is discrete, and replaces the ODE with a 
finite-difference equation making all the numerics people happy...

• 1962: Prigogine & Henin hypothesize a new equation
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• 1964: Nodvik hypothesizes a new equation

• 1970: Teitelboim hypothesizes a new equation

• 1971: Mo & Papas modify energy-momentum conservation and hypothesize a new equation 

• 1972: Leiter criticizes Mo & Papas. “One cannot modify the law of energy conservation...”

• 1973: Mo & Papas to Leiter “Only experiment will tell what is energy conservation”

• 1976: Gonzales & Gascon claim that LAD is only an approximated equation and derive a 
new equation.

• 1977: Petzold & Sorg generalize Caldirola’s equation

• 1981: Valle et al. claim that Mo-Papa’s equation is the correct equation

• 1988: Valentini proves the non-physical solutions of LAD are due to non-analytic fields

• 1992: Yaghjian derives an equation for a spherical particle

• 1997-2000: Rohrlich claims that Yaghjian’s equation is the correct equation

• 2008: Rohrlich “Using physical arguments, I derive the physically correct equations of 
motion for a classical charged particle from the LAD equation which is well known to be 
physically incorrect.”

• 2009: Gralla, Harte & Wald rederive Landau-Lifshitz equation rigorously using distribution 
theory

• 2009: Sokolov et al. introduce another equation

History of the Radiation-Reaction Problem
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(2) Study the motion of a particle in a given external 
electromagnetic field        : it also has a well-posed initial value 
formulation.

(1) Studying the evolution of the electromagnetic fields for 
known sources      : it has a well-posed initial value formulation.

Mathematical Origins of the Problem 
of Radiation-Reaction

mu̇α = −eFαβuβ

Maxwell’s equations:
Lorentz force equation:

There are three different kind of problems:

∂αFαβ = 4πJβ

Jα

Fαβ

Jα(x) = −euαδ(x− z(t))
dτ

dt

(3) The coupled system: doesn’t make mathematical sense because 
the field is necessarily singular at the position of the particle

Also for a point-particle:
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Recall that the rate at which energy is 
radiated is:

Landau-Lifshitz correction

The Radiation-Reaction Dominated Regime

{(Lorentz)
for the solution of Landau-Lifshitz:
R = −2

3
e2 (k · u)4

(k · u0)2
{

a2
0Â

′2

+τ0(k · u0)
[
2a2

0Â
′′ · Â′ − 2a4

0ψÂ′2
]}

For a typical laser 

This is far beyond current technological capabilities

∼ ωτ0a
4
0

ωτ0 ∼ 10−8

So Radiation-reaction effects are important when: a2
0 ∼ 108

a0 ∼ 10

Solve the Landau-Lifshitz equation analytically for a laser wave.

R = −mτ0u̇
αu̇α

kα

a0 =
eA

m

Âα normalized 4-potential
wave 4-vector

intensity of laser

initial 4-velocityuα
0
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The Radiation-Reaction Dominated Regime

RRDR Criterion:
γ0a

2
0 ∼ 108

∆ =
1
2π

∫ 2π

0

|ELL(ξ)− ELorentz(ξ)|
|ELL(ξ) + ELorentz(ξ)|

This scales radiation-reaction effects 
by a factor      !

uα = γ(1,"v) =⇒

γ0

uα = O(γ)
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Thank you!

This work was done under the supervision of Prof. Johann 
Rafelski from the physics department, together with: 

• Lance Labun (Physics department UoA)

• N. Elkina, C. Klier & H. Ruhl (LMU Munich)

Collaboration
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Pictures for Linearly Polarized Wave
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Lorentz Landau-Lifshitz

Wave Direction:          Polarization:
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λ = 942 nm ω = 2 fs−1

T = 26.8 fs
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a0!2.7, Λ!942 nm, Log!N"!5τ0 !→ Nτ0

Monday, May 3, 2010



with:

The Setup

We solve the LL eq. for the potential:
Aα(x) = A0Re [εαf (ξ)]

k2 = 0
|ε|2 = −1
k · ε = 0

• Polarization vector
• Wave vector
•

kα

εα

ξ = k · x

{
Linear Polarization Circular Polarization

Examples

εα = (0, 1, 0, 0)
kα = (ω, 0, 0, k)

f(ξ) = sin(ξ)
$A = −A0 sin(kz − ωt)x̂

εα =
1√
2
(0, 1,−i, 0)

kα = (ω, 0, 0, k)

f(ξ) =
√

2ei(ξ−ξ0)

$A = A0 [cos(kz − ωt)x̂
− sin(kz − ωt)ŷ]
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“Trick”: change variables 

Solution of the Landau-Lifshitz Equation

mu̇α = −eFαβuβ − eτ0

{
Fαβ

,γ uβuγ − e/m
[
FαβFβγuγ − F βγFγδu

δuβuα
]}

The LL equation is non-linear and therefore very difficult 
to solve in terms of proper time...

τ !→ ξ = k · x dξ

dτ
= k · u

(k · u) u′α = − e

m
Fαβuβ −

e

m
τ0

{
Fαβ

,γ uβuγ − e

m

[
FαβFβγuγ − uβF βγFγδu

δuα
]}

SOLUTION
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